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ABSTRACT: The microtubule (MT) associated protein tau, which is highly
expressed in the axons of neurons, is an endogenous MT-stabilizing agent that
plays an important role in axonal transport. Loss of MT-stabilizing tau
function, caused by misfolding, hyperphosphorylation, and sequestration of
tau into insoluble aggregates, leads to axonal transport deficits with
neuropathological consequences. Several in vitro and preclinical in vivo
studies have shown that MT-stabilizing drugs can be utilized to compensate
for the loss of tau function and to maintain/restore effective axonal transport.
These findings indicate that MT-stabilizing compounds hold considerable
promise for the treatment of Alzheimer disease and related tauopathies. The
present article provides a synopsis of the key findings demonstrating the
therapeutic potential of MT-stabilizing drugs in the context of neuro-
degenerative tauopathies, as well as an overview of the different classes of
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B MICROTUBULE (MT) DYNAMICS, AXONAL
TRANSPORT, AND NEURODEGENERATIVE
TAUOPATHIES

Microtubules (MTs), essential constituents of the cytoskeleton
in eukaryotic cells, are involved in a number of important
structural and regulatory functions, including the maintenance
of cell shape, intracellular transport machinery, as well as cell
growth and division. Structurally, MTs are hollow tubes of
approximately 24 nm in diameter that result from the head-to-
tail1 polymerization of a- and f-tubulin heterodimers (Figure
1).

MTs are highly dynamic structures that alternate between
growing and shrinking phases.” Because of this dynamic nature,
MT's can undergo relatively rapid turnover and form a variety of
different arrays within cells. The presence of various tubulin
isoforms, post-translational modifications, and interactions with
MT-associated proteins (MAPs) play an important role in
determining the morphology, stability, and ultimately, the
particular function of the MT lattice in different cell types.

In the axons of neurons, MTs form polarized linear arrays
with the plus ends directed toward the synapses and the minus
ends toward the cell body. Such an organization of axonal MT's
provides both structural support and directionality for the
intracellular transport of proteins and vesicles to and from the
cell body and the synapses (Figure 2). This cytoskeletal
structure, together with molecular motors such as kinesins and
dyneins, forms the axonal transport machinery, which is critical
to the viability of neurons,’ and notably, axonal transport
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defects are observed in several neurodegenerative diseases.* In
the case of tauopathies, which are a group of neurodegenerative
diseases that include Alzheimer’s disease (AD) and related
forms of frontotemporal lobar degeneration (FTLD), axonal
transport deficits are thought to arise at least in part from the
misfolding and aggregation of the MT-associated protein
(MAP) tau.’ These tau aggregates form intracellular
filamentous inclusions, known as neurofibrillary tangles
(NFTs) and neuropil threads, which together with the senile
plaques comprising amyloid # (Af) peptides, constitute the
characteristic lesions that are diagnostic of AD. Furthermore,
the presence of tau aggregates in the absence of deposits of Af
peptides or other proteinaceous inclusions comprises the
defining lesions of other tauopathies, such as Pick’s disease,
progressive supranuclear palsy (PSP), and corticobasal
degeneration, which are the most common forms of FTLD.}
The protein tau is expressed particularly in the axons of
neurons with the primary function to promote MT
stabilization.® Under physiological conditions, the vast majority
of tau molecules are bound to MTs. However, in neurons
affected by tauopathies, tau becomes progressively disengaged
from the axonal MTs, possibly because of hyperphosphor-
ylation, which is known to reduce the binding affinity of this
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Figure 1. Schematic of the tubulin polymerization process. (A) Head-
to-tail polymerization of @- and f-tubulin heterodimers results in the
formation of protofilaments. (B) Lateral interactions between
protofilaments enable them to assemble into sheets of tubulin,
which fold on themselves to form hollow MT structures typically
comprising 13 protofilaments per MT. (C) During MT-polymer-
ization, guanosine S'-triphosphate (GTP)-bound @,f-tubulin hetero-
dimers are added at the polymerizing end of the MT. Concomitantly
or soon after incorporation into the MT, GTP-bound to S-tubulin is
hydrolyzed to the corresponding diphosphate (GDP-MT). The GTP
to GDP hydrolysis is not required for MT polymerization; however,
this conversion plays an important role in determining the dynamic
instability of the MT, as GTP-tubulin forms more stable interactions,
while GDP-tubulin establishes comparatively weaker intersubunit
interactions and is therefore prone to depolymerization. The presence
of a GTP-bound tubulin at the growing end of the MT (GTP cap)
protects the MT from depolymerization. Removal of the GTP cap can
trigger rapid depolymerization events. (D) Upon depolymerization,
released tubulin heterodimers can exchange GDP with GTP and re-
enter the polymerization cycle.

protein for the MTs.”® An abnormal detachment of tau from
the MTs is thought to alter the dynamics and organization of
the axonal MTs, which in turn can trigger or exacerbate axonal
transport defects.®> Furthermore, once detached from MTs and
hyperphosphorylated, tau becomes considerably more prone to

misfolding and aggregation.”'® This misfolded and/or
aggregated tau can in turn recruit additional functional tau
proteins into the aggregation cascade, contributing further to
the destabilization of axonal MTs.!! Thus, on the basis of the
relationship between tau pathology and the appearance of
MT"* and axonal transport deficits, a possible strategy for the
treatment of AD and related tauopathies is to employ
exogenous MT-stabilizing agents that could compensate for
loss of tau maintenance of the appropriate organization and
dynamics of the axonal MTs."® Such an approach would hold
the promise of restoring effective axonal transport in neurons
affected by tauopathy and, as a result, prevent synaptic
dysfunctions and neuron loss.">"*

Over the past several decades, several classes of MT-
stabilizing natural products have been discovered (Table 1)
with the majority of these having been extensively characterized
as cancer therapeutics because of the essential role of MTs in
cell division. In contrast, as shown in Table 1, a comprehensive
evaluation of the different classes of natural products in the
context of neurodegenerative tauopathies has not as yet been
achieved. A critical challenge facing the development of CNS-
directed MT-stabilizing therapies to treat tauopathies is
identifying brain-penetrant compounds that would be effective
at nontoxic doses. Indeed, the blood—brain barrier (BBB),
which is equipped with relatively impermeable intercellular
tight junctions, as well as with active transporters such as the P-
glycoprotein (Pgp),"* is known to be a remarkable obstacle in
the development of any CNS-directed therapy.'® It is estimated
that <2% of all potential drug candidates can permeate across
the BBB." In addition, MT-stabilizing drugs, which are
routinely used in cancer chemotherapy, are known to cause a
number of debilitating side effects, which are directly linked to
the MT-stabilizing properties of these compounds and include
neutropenia'® and peripheral neuropathy.'® Thus, even if brain-
penetration issues were solved, long-term treatment of
tauopathy patients with this class of therapeutics might be
difficult because of dose-limiting toxicities. Despite these
important challenges, different lines of research have validated
the potential utility of MT stabilization as a therapeutic
approach to treat tauopathies. In vitro, MT-stabilizing agents
have been found to protect cultured neurons against tau->"*'
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Figure 2. Schematic representation of the axonal transport machinery, which comprises MTs, motor proteins (kinesins and dyneins), and cargos.
Kinesins and dyneins move toward the plus and the minus ends of the MTs, respectively, and are involved in either the anterograde (kinesins) or
retrograde (dyneins) axonal transport. The MT-stabilizing function of tau plays an important role in the organization and dynamics of axonal MTs
and, as such, is critical for axonal transport. Under pathological conditions, hyperphosphorylation of tau leads to an abnormal disengagement of tau
from the MTs, which results in disruption of MT dynamics and impaired axonal transport.
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Table 1. Different Classes of MT-Stabilizing Natural Products and Their Stage of Development as Potential Candidates for

Neurodegenerative Tauopathies

compd class brain penetration

taxanes Paclitaxel, docetaxel, and several related analogues are not brain penetrant.
Selected'anaslg_%%es and/or prodrugs are reported to exhibit improved brain
penetration.

epothilones several examples reported to be brain penetrant®*>

discodermolide  not reported

dictyostatin not reported

eleuthesides not reported

laulimalide not reported

peloruside not reported

cyclostreptin not reported

taccalonolides not reported

zampanolide not reported

ceratamines not reported

stage of development in the context of tauopathies

Paclitaxel was evaluated in an animal model of tauopathies.>®
Lack of brain penetration prevented further development of
this compound.

Epothilone D was evaluated in animal rr}%odelsm’27

entered phase Ib clinical trial for AD.

and recently

not reported
not reported
not reported
not reported
cell-based studies™
not reported
not reported
not reported

not reported

and Apf-mediated®*™>* neurotoxicity. In vivo, the first
demonstration of the therapeutic potential of this type of
compounds was reported in 2005,>° when paclitaxel treatment
was found to restore fast axonal transport (FAT) and increase
MT density in LS axons that project from spinal motor neurons
to lower limb muscles of T44 tau transgenic (Tg) mice affected
by spinal cord tau pathology. Importantly, paclitaxel treatment
produced an improvement in the motor weakness phenotype of
these Tg mice because of uptake at neuromuscular junctions
and retrograde transport.”® However, paclitaxel does not cross
the BBB and is thus unsuitable as a therapeutic candidate for
human tauopathies where tau pathology is primarily in the
brain. More recently, a series of studies from our
laboratories***” and subsequently from Bristol-Myers Squibb>®
(BMS) provided further validation of this therapeutic approach
using the brain-penetrant MT-stabilizing agent epothilone D to
prevent and ameliorate disease in other lines of Tg mouse
models with tau pathology in the brain that resembles that
observed in tauopathy patients. In our studies, administration of
low weekly doses of epothilone D by intraperitoneal (ip)
injections into PS19 mice, which have NFT-like inclusions in
the brain,”® produced normalization of MT density, restoration
of FAT, reduction in axonal dystrophy, and decrease in
neuronal pathology and death, with consequent improvement
in cognitive performance.”*”” Notably, these effects were seen
in both preventative and interventional studies in which
epothilone D was administered to PS19 mice either before or
after the onset of tau pathology. Similar outcomes on
neuropathology and cognition were observed in the BMS
studies in which epothilone D was administered to rTg4510
and 3X tau Tg mice.”®

One important observation that was made in both the
paclitaxel*® and epothilone D in vivo studies’®*® is that the
dose—response curves appeared to be U-shaped, with relatively
low doses of the compounds (e.g, 100 times below the
cumulative cancer chemotherapeutic dose, in the case of
epothilone D**7?*) being most efficacious. This result indicates
that low doses of MT-stabilizing agents may be both necessary
and sufficient to restore the dynamics of axonal MTs and
normalize FAT to physiological levels and thus produce
optimal therapeutic effects. Overstabilization of MTs on the
other hand may in fact be counterproductive and could be
accompanied by side effects such as peripheral neuropathy.
Thus, an important outcome of the sustained low dose
treatments with MT-stabilizing drugs is that Tg animals did

8981

% including peripheral neuro-

not show signs of toxicities,”®
pathy and neutropenia.

Collectively, these findings indicate that brain-penetrant MT-
stabilizing agents may be useful for the treatment of AD and
related FTLD tauopathies. Importantly, BMS has recently
initiated a phase Ib clinical trial in which epothilone D is being
evaluated in AD patients.>® Moreover, since ~80% of
Parkinson’s disease (PD) patients develop dementia (PDD)
by ~10 years after onset of PD and since AD-like tau pathology
is associated with cognitive impairment in PDD, MT-stabilizing
agents could be of therapeutic benefit to PDD patients.>"

The highly promising results obtained from the epothilone D
studies in our tau Tg animal models raise the possibility that
other MT-stabilizing agents may be identified as alternative and
potentially improved clinical candidates. As summarized in
Table 1, although a growing number of MT-stabilizing natural
products continue to be discovered, to date, only a few selected
compounds have been characterized as potential candidates for
the treatment of neurodegenerative diseases. In the sections
below, we provide an overview of the different classes of MT-
stabilizing agents, including natural products and fully synthetic
compounds, with a particular focus on those that might be
useful to treat AD and other tauopathies.

B MT-STABILIZING NATURAL PRODUCTS AND
ANALOGUES THEREOF

Taxanes. Paclitaxel (Taxol, 1, Figure 3), which was isolated
in the 1960s from the stem bark of the Western yew, Taxus
brevifolia,39 as well as from other species of the Taxus genus,
was found to exhibit potent antitumor properties. The structure
of paclitaxel was reported in 1971,*" but the MT-stabilizing
properties of this compound remained unknown until 1979,
when the Horwitz laboratory in pioneering studies demon-
strated that paclitaxel is able to promote MT assembly in
vitro.*! Paclitaxel binds to the lumen (i.e., the inside) of the MT
at a binding site found in the S-tubulin subunit,* although
initial binding of this compound to the outer wall of the MT
has been proposed, which may precede the translocation of this
drug into the lumen of the MT.** The luminal binding site,
which is commonly referred to as the taxane binding site, is also
targeted by the MT-binding repeats of tau;* importantly,
paclitaxel is found to displace tau from MTs.*® The binding of
paclitaxel within the taxane site in f-tubulin is believed to
promote MT stabilization by inducing conformational changes
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Figure 3. Structures of paclitaxel, docetaxel, 10-deacetylbaccatin III, and selected examples of Pgp-insensitive taxanes.

of the M-loop of f-tubulin that result in more stable lateral therapy.*” Although paclitaxel could be obtained only in limited
interactions between adjacent protofilaments.*’ quantities from the bark of Taxus brevifolia, the issue of supply

Because of the potent antimitotic properties, paclitaxel has was elegantly solved by semisynthesis from more readily
been widely used for the treatment of cancer.*® Much of the available 10-deacetylbaccatin III (3, Figure 3).°>*' Among the
interest surrounding the MT-stabilizing class of therapeutics is various reported tactics to obtain paclitaxel from 3 (reviewed by
arguably due to the success of paclitaxel and the closely related Kingston et al.*?), the Ojima—Holton fS-lactam strategy for the
analogue docetaxel (Taxotere, 2, Figure 3) in cancer chemo- coupling of the phenylisoserine side chain proved to be most
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Figure 4. Naturally occurring epothilones (A) and selected examples of synthetic epothilones (B).

effective.’>>® In addition to these semisynthetic approaches,
biotechnological methods of taxane production proved to be
successful.”’

Paclitaxel was the first MT-stabilizing agent to be investigated
in an animal model of neurodegenerative tauopathies, the T44
tau Tg mouse, which exhibits tau pathology in spinal motor
neurons that project outside the BBB to innervate striated
muscles where there is no BBB equivalent.”> However, the lack
of brain penetration of paclitaxel precluded further inves-
tigations of this compound in mouse models of tauopathies
that, unlike T44 tau Tg mice, more closely resemble human
tauopathies with tau pathology in the brain.*® The limited
ability of paclitaxel and docetaxel to diffuse across the BBB is
believed to be caused at least in part by the Pgp efflux
pump,***® which is highly expressed in the BBB.®° Thus, taxane
analogues capable of overcoming Pgp-mediated transport may
result in improved brain penetration. Several examples of
compounds of this type have been reported, which include ()
weak Pgp substrates, such as cabazitaxel*> (4, Figure 3), an
FDA approved semisynthetic taxane that can saturate the active
transporter;(’1 (b) taxoids that are also ng-inhibitors,éz_64 such
as SB-T-1213,%° SB-T-1214,°° and IDN-5109%" (5, 6, and 7,
respectively, Figure 3); and (c) taxoids that are devoid of Pgp-
interactions, such as TX-67°*%® (8, Figure 3). Among these
Pgp-insensitive taxanes, 7 was found to exhibit greater brain
penetration than paclitaxel.>* Furthermore, pharmacokinetic
(PK) studies with 4 revealed that drug exposure in the brain
could be significantly enhanced by administering the compound
via rapid infusions that resulted in plasma drug levels that are
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above the threshold needed to saturate Pgp.°" Other examples
of taxanes capable of circumventing Pgp-mediated efflux are
orally active BMS-275183°"7° (9, Figure 3) and milataxel,”"”>
also known as MAC-321 (10, Figure 3).

In addition to these semisynthetic taxanes, promising results
have been reported with brain targeted delivery approaches. An
example of this strategy is the paclitaxel—peptide conjugate
GRN1005* (11, Figure 3), a Pgp-insensitive prodrug that
exploits the low density lipoprotein receptor-related protein 1
(LRP-1),”* which is highly expressed in the BBB, to deliver
paclitaxel into the brain via receptor-mediated uptake.
Compound 11 was recently reported to be active in patients
with advanced solid tumors with brain metastases.”*

Epothilones. Epothilones A and B (12 and 13, respectively,
Figure 4), originally discovered by Héfle and Reichenbach as
antifungal agents produced by the soil bacterium Sorangium
cellulolus,”® were later found by scientists at Merck to promote
MT assembly.”® The same studies revealed that the epothilones
compete with paclitaxel for the taxane binding site on S-tubulin,
suggesting that this class of compounds may act on MTs in a
paclitaxel-like manner.”® This observation led to the hypothesis
that epothilones, taxanes, and other classes of MT-stabilizin%
natural products may share a similar pharmacophore.”” NMR”
and computational studies’® supported this common pharma-
cophore model; however, an evaluation by electron crystallog-
raphy of the complex of epothilone A with tubulin polymerized
in zinc-stabilized sheets demonstrated that epothilone A and
paclitaxel interact in substantially different ways within the same
binding pocket in S-tubulin.*’ Such differences in the binding

dx.doi.org/10.1021/jm301079z | J. Med. Chem. 2012, 55, 8979—8996
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modes provide a possible explanation of why the epothilones,
but not paclitaxel, retain generally high levels of antimitotic
activity in cell lines that are resistant to taxanes because of point
mutations in the f-tubulin subunit.®’ An additional distinctive
feature of many of the epothilones is that these compounds,
unlike paclitaxel and docetaxel, are active against cell lines with
multidrug resistance (MDR) caused by the overexpression of
Pgp.

In addition to epothilones A and B, several other naturally
occurring congeners have been isolated as minor components
of fermentation of myxobacteria (14—19, Figure 4 A) %
Among these, epothilone D (17, Figure 4 A) exhibited a
number of promising properties, including a greater therapeutic
index as a chemotherapeutic agent, compared to 13.** Clinical
trials with this compound, however, were halted because of
severe side effects, which included CNS toxicities.** These CNS
side effects are possibly the earliest evidence that 17 is a brain-
penetrant compound, and reports from the patent literature
indicated that this is indeed the case.!> Furthermore, in 2006
epothilone D was reported to be effective in an animal model of
schizophrenia, the STOP-null mouse model, which both lacks a
MAP known as STOP (stable tubule only polypeptide) and
exhibits cytoskeletal defects in CNS neurons.*® The selection of
17 as preferred candidate compound for efficacy studies in tau
Tg animals followed a comparative study in which selected
taxanes and epothilone D congeners, including deoxyepothi-
lone F¥” and fludelone®® (19 and 20, respectively, Figure 4),
were evaluated for their ability to diffuse across cellular
membranes in vitro and enter the brain in vivo. In addition,
these compounds were tested for their ability to elicit MT
stabilization in the CNS of normal mice, as determined by the
elevation in acetylated a-tubulin (AcTub), which is known to
be a marker of stable MTs.*>° Interestingly, PK studies
revealed that significant concentrations of these epothilones in
the brain were achieved.>® Furthermore, these studies showed
that 17 exhibits a considerably longer half-life in the brain than
in plasma. Similar PK properties have been described for 13.%*
The ability of 17 to be retained selectively in the brain for
relatively prolonged periods of time permitted infrequent (i.e.,
weekly) administration of the compound in efficacy studies and
1ikely2g§c71uced the potential for systemic toxicities in tau Tg
mice.””

After the first total syntheses of 12 by the groups of
Danishefsky,g1 Nicolaou,”® and Schinzer” between 1996 and
1997, several synthetic strategies for the efficient synthesis of
epothilone analogues have been developed (for comprehensive
overview, see Altmann et al®* and references therein).
Collectively, these studies enabled the synthesis and evaluation
of several hundred analogues. Among these, the epothilone
lactam ixabepilone (Ixempra, 24, Figure 4 B) was the first
epothilone to receive FDA approval for the treatment of
metastatic breast cancer.”® Other synthetic epothilones in
clinical development include sagopilone (25, Figure 4 B),”
which is characterized by the presence of the benzimidazole
side chain. Compound 25 was found to be more potent in vitro
than 13, as well as highly effective in mouse tumor xenograft
models.”*” Notably, this compound has been found to be
brain-penetrant.’

Discodermolide. (+)-Discodermolide (26, Figure S), a
cytotoxic polyketide isolated by Gunasekera and co-workers
from the deep-water Caribbean sponge Discodermia dissoluta,”®
was initially reported to be an immunosuppressant agent.””'%
The MT-stabilizing properties of this compound were
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Figure S. Structure of discodermolide and a biologically active,
structurally simplified analogue (27).

discovered in 1996,'°"'%* when it was found that 26 is even
more potent than paclitaxel in promoting the nucleation phase
of tubulin assembly. Further studies revealed that discodermo-
lide, unlike paclitaxel, retains potent antimitotic activity against
Pgp-overexpressing cancer cell lines.'”> Mechanistically, 26 was
found to comgete with paclitaxel for the taxane binding site on
P-tubulin,'>'* and photoaffinity labeling experiments by
Horwitz, Smith, and co-workers confirmed that the dis-
codermolide binding site is in proximity to the taxane site.'"*
Interestingly, the bioactive conformation of 26 is believed to be
U-shaped, where the C19 side chain comes close to the lactone
moiety.'® Overlays of this folded conformation of 26 and the
bioactive conformation of paclitaxel highlight the similarities
between the two 3D structures, supporting the possibility that
both compounds adhere to a common pharmacophore.'®’
However, unlike paclitaxel, tubulin-bound discodermolide is
thought to interact with the N-terminal H1-S2 loop'® and not
with the M-loop, which is believed to be a key mediator of
paclitaxel induced MT stabilization.*” This observation suggests
that the MT-stabilizing effects of paclitaxel and discodermolide
may be complementary,'® thus providing an explanation for
the observed synergistic effects of 26 and paclitaxel both in
vitro and in vivo.'””~'% Notably, 26 is the only example among
the taxane site MT-stabilizing agents that shows synergy with
paclitaxel.

The first total synthesis of discodermolide was reported by
the Schreiber laboratory, which reported the synthesis of the
natural product''® and, prior to that, the synthesis of the
unnatural (=) antipode.'"’ Several other syntheses of 26 have
been reported (reviewed by Smith and Freeze''?). Notably, the
gram-scale synthesis devised by Smith and co-workers,"'>'"*
combined with Paterson’s first generation endgame,115 was
licensed to Novartis to permit the synthesis of 60 g of material
needed to conduct a phase I clinical trial.''® In addition to
discodermolide, these synthetic efforts produced numerous
analogues, including discodermolide—dictyostatin''” and dis-
codermolide—paclitaxel''® hybrid structures. Interestingly,
structural changes that impede the active U-shaped con-
formation proved to be highly detrimental to the biological
activity. On the other hand, relatively substantial structural
simplifications that maintain the characteristic folded con-
formation of 26 produced several interesting analogues (e.g.,
27, Figure S) with biolo§ical activities comparable to that of the
parent compound.''***

Dictyostatin. (—)-Dictyostatin (28, Figure 6), which was
first isolated from a Maldives marine sponge Spongia sp. by
Pettit and co-workers,'>! was found to be highly potent against
a variety of human cancer cell lines with a Gl in the 50 pM to
1 nM range. The MT-stabilizing properties of this compound
were reported by the Harbor Branch Oceanographic

dx.doi.org/10.1021/jm301079z | J. Med. Chem. 2012, 55, 8979—8996
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(-)-Dictyostatin (28)

Figure 6. Structure of dictyostatin.

Institute."*” The same studies also demonstrated that 28 is

active against paclitaxel-resistant cell lines that overexpress Pgp.
Competition studies revealed that 28 binds to the taxane
binding site.'>* Interestingly, the configurational assignment for
dictyostatin is fully consistent with a common biogenesis for
the structurally related, but open-chain, discodermolide. Indeed
there is an exact configurational match of the C19—C26 and
C6—C14 regions of 28 with those at C17—C24 and C4—CI2
of discodermolide, respectively. Moreover, it has been shown
that the preferred conformation for 28 in solution closely
resembles the conformation that was determined for
discodermolide both in the solid state and in solution,'**
strongly suggesting that dictyostatin and discodermolide
interact in a similar fashion with the taxane binding site on f-
tubulin,'>>'2¢

The first total syntheses of (—)-dictyostatin were reported
concurrently by the laboratories of Paterson'*” and Curran.'”®
Other alpgroaches to the natural product were later
reported. 2ot Dictyostatin currently represents a promising
antimitotic natural product lead for development in cancer
chemotherapy. To date, the ability of this compound and/or
related analogues to gain access to the CNS has not been
reported.

Eleutherobin, Sarcodyctins, and Related Eleuthesides.
Eleutherobin'*>'** (29, Figure 7) and sarcodyctins">*"** (30—
33 Figure 7) are structurally related, coral-derived antimitotic
agents isolated from Eleutherobia sp. and Sarcodictyon roseum,
respectively. The abilities of these eleuthesides to promote MT-
stabilization were described by Long et al.'** (eleutherobin)

[¢]
= N
(6]
y W !
N
Me
5
3 OMe
0 0Ac
OH
[¢]

R = CHjg, Sarcodyctin A (30)

Eleutherobin (29) OH R = CH,CHj, Sarcodyctin B (31)

O~ "OMe

R = H, SKBIII.296 (34)
R = CH,0Ac, SKBIII.294 (35)

R = H, Sarcodyctin C (32)
R = Ac, Sarcodyctin D (33)

Figure 7. Eleutherobin, sarcodyctins, and selected synthetic
derivatives.
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and Ciomei et al.'*® (sarcodyctins). Competition binding
studies revealed that these MT-stabilizing agents interact with
P-tubulin at the taxane binding site."**"*” Like paclitaxel, 29
was found to be a substrates for the Pgp.'>* The carbohydrate
moiety of this compound is thought to be important for the
eleutherobin—Pgp interaction, as indicated by the observation
that analogues lacking this fragment,138 such as SKBII.296 and
SKB.294 (34 and 38, respectively, Figure 7), did not appear to
be sensitive to Pgp-mediated efflux.'>®

Total syntheses of eleutherobin and sarcodyctins have been
reported by the Nicolaou**™'** and Danishefsky laborato-
ries." 7% To date, no studies describing the evaluation of
these compounds in either cell or animal models of
neurodegenerative tauopathy have appeared.

Laulimalide. Laulimalide and the rearrangement product
isolaulimalide (36 and 37, respectively, Figure 8) were isolated

(-)-Laulimalide (36)

Isolaulimalide (37)

Figure 8. Laulimalide and isolaulimalide.

. . . 146 1
from marine sponges collected in Indonesia, 46 Vanatau,"*’ and

the island of Okinawa.'*® These compounds were described as
cytotoxic agents; however, their mode of action was unknown
until 1999, when Mooberry and co-workers reported that these
compounds exhibit paclitaxel-like MT-stabilizing properties."*’
In addition, the same studies demonstrated that 36 retains
strong antimitotic activity against cancer cell lines over-
expressing Pgp.'*'** Interestingly, competition studies with
radiolabeled or fluorescently labeled paclitaxel revealed that 36
does not compete for the taxane binding site."® Furthermore,
consistent with this observation, 36 was found to be active
against cell lines with A-tubulin mutations'®! that cause
resistance to both taxanes and epothilones.'*® In addition,
synergistic effects of laulimalide with taxane drugs have been
reported.'>® Taken together, these results clearly indicate the
existence of a distinct tubulin binding site for this compound.
Recent studies revealed that 36 binds to the exterior of the MT
on f-tubulin.'?

Because of these promising biological activities and because
of the limited natural supply, laulimalide became an attractive
synthetic target. The first total synthesis of 36 was reported by
Ghosh and co-workers.'>* Several other synthetic approaches,
reviewed by Mulzer and Ohler,'*® have been developed.
Notably, scientists at the Eisai Research Institute were able to
synthesize sufficient quantities of laulimalide to enable in vivo
efficacy studies."*® Somewhat surprisingly, despite the promis-
ing in vitro anticancer activity and PK properties, 36 did not
produce a statistically significant tumor growth inhibition. The
reasons for the lack of in vivo anticancer effects of laulimalide
remain unclear but may be explained, at least in part, by the
relatively high mitotic block reversibility ratio observed for this
compound. A high reversibility of the antimitotic effect would
imply that, in vivo, cancer cells exposed to laulimalide may
resume mitosis soon after the circulating drug levels becomes
sufficiently low.">” Furthermore, this lack of in vivo anticancer
activity was accompanied by severe toxicities indicating that 36
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may not be a viable candidate for cancer chemotherapy."’

However, subsequent studies in a different animal model

demonstrated a significant inhibition of tumor grow’ch.158
Peloruside A. Isolated in New Zealand from the marine

sponge Mycale hentscheli, peloruside A (38, Figure 9) was

6Me

R = CHj3, Peloruside A (38)
R = H, Peloruside B (39)

Figure 9. Pelorusides A and B.

identified as a potent cytotoxic agent with paclitaxel-like
activities.">'®* In addition to the antimitotic activity, this
natural product was found to be not affected by the
overexpression of Pgp or by tubulin mutations that are
known to affect the activity of paclitaxel.'®" Competition
binding experiments revealed that 38 does not bind to the
taxane site in f-tubulin, while the observation that laulimalide
can displace 38 clearly suggests that these two compounds may
have overlapping binding sites.""1%% In line with these results,
38 did not show synergistic effects with laulimalide, but like the
latter, it was found to synergize with other taxane site drugs in
both polymerizing purified tubulin'** and cellular activity.'®*

The first total synthesis of peloruside A was reported in 2003
by De Brandander and co-workers.'®* Several other approaches
to this natural product were later developed."®*~"”" In addition
to 38, other naturally occurring congeners have been
isolated,'”>'"3 including peloruside B (39, Figure 9), which
exhibits similar MT-stabilizing and biological activities as 38."”>

Recent studies have shown that 38 protects cultured neurons
against okadaic acid induced tau phosphorylation.”’ These
results suggest that in addition to the epothilones, other MT-
stabilizing agents, including those that do not target the taxane
binding site on f-tubulin, such as peloruside and laulimalide,
may be considered potential candidates for the treatment of
tauopathies. However, there are presently no reports on the
brain penetration of 38.%'

Cyclostreptin. (—)-Cyclostreptin (40, Figure 10), a
bacterial natural product also known as WS9885B and
FR182877, was originally identified as a compound with
paclitaxel-like biological activities using a cell-based screen for
novel antimitotic agents.'”*'”> Structurally, 40 is characterized
by an unusual ring system featuring a constrained o,f-

(-)-Cyclostreptin (40)

Figure 10. Structure of (—)-cyclostreptin.
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unsaturated lactone. The natural product was initially assigned
the opposite configuration.'”® Total syntheses of both (+) and
(—=)-cyclostreptin, as reported by the laboratories of Sor-
ensen'””'”® and Evans,'”” confirmed the (—)-enantiomer to be
the natural product.

Cytotoxicity studies revealed that 40, although ~10 times
less potent than paclitaxel in paclitaxel-sensitive cell lines, is
considerably more effective than paclitaxel against Pgp-
overexpressing cell lines.'®® Furthermore, these studies
demonstrated that 40 is not affected by tubulin mutations
that are known to cause resistance to both paclitaxel and
epothilone A."*® Interestingly, whereas cyclostreptin was found
to be an effective competitive inhibitor of the binding of
paclitaxel to MTs, significant differences were observed in the
MT-stabilizing properties of these two compounds. While
cyclostreptin-treated MTs are more stable to depolymerizing
conditions than those resulting from paclitaxel treatment,
cyclostreptin-induced MT-stabilization requires the presence of
MAPs and GTP, which are not necessary for paclitaxel-induced
MT-assembly.'® Subsequent studies revealed that 40 interacts
covalently with specific amino acid residues of -tubulin in both
MTs and tubulin dimers. These residues are Asn228, which
resides in the proximity of the taxane binding site, and Thr220
at the outer surface of a pore™ in the MT wall.'®!
Computational studies suggested that the covalent attachment
of 40 to Thr220 may prevent the diffusion of paclitaxel and
other taxane-binding drugs across the MT pore into the taxane
binding site."*> This model provides an explanation of why 40
can prevent the binding of paclitaxel to f-tubulin despite the
relatively weak tubulin polymerization properties compared to
paclitaxel. Cyclostreptin is the first example of a MT-stabilizing
agent found to interact irreversibly with tubulin. Similar mode
of action has recently been reported for zampanolide'® (vide
infra). To date, there are no reports of 40 being evaluated in
cell models and/or animal models of tauopathies; thus, it is not
clear yet whether the particular mode of action of cyclostreptin,
which involves covalent modification of tubulin, may be
effective in restoring axonal transport deficits in neurons
affected by tauopathy.

Taccalonolides. Taccalonolides are steroidal natural
products that were originally isolated in 1963 from the tubers
of Tacca leontopetaloides.'®* The structures of these compounds
were fully elucidated in 1987 when Chen and co-worker
characterized taccalonolides A and B (41 and 42, respectively,
Figure 11) from Tacca plantaginea.'> Since then, several other
members of the taccalonolide class have been discovered (e.g.,
43 and 44, Figure 11)."%°7'% The MT-stabilizing properties of
the taccalonolides were first recognized in 2003 when

R = OAc, Taccalonolide AF (45)
R = OH, Taccalonolide AJ (46)

(41) Taccalonolide A OAc OAc
(42) Taccalonolide B OH OAc
(43) Taccalonolide E  OAc H
(44) Taccalonolide N OH H

Figure 11. Selected taccanolides.
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taccalonolides A and E were found to cause paclitaxel-like MT-
bundling in dividing cells."”® Furthermore, the taccalonolides
were found to be poor substrates for the P%p and exhibit only
limited cross-resistance with paclitaxel.'”*"

The mode of action of this class of natural products remains
an active area of investigation. Studies with 41 and 42 revealed
that the taccalonolides do not bind to either tubulin or MTs"*>
and that the MT-stabilizing properties of these compounds are
observed only in intact cells but not in cell extracts or purified
tubulin preparations.'”>'*® Recent studies, however, reported
the identification of considerably more potent MT-stabilizing
members of the taccalonolide family, such as taccalonolides AF
and AJ (45 and 46, respectively, Figure 11), which promote
MT assembly from purified tubulin.'® Further studies are
needed to elucidate the mode of action of taccalonolides and to
evaluate the potential of taccalonolides in the context of
neurodegenerative disorders.

To date, there are no reports describing the total synthesis of
taccalonolides.

Zampanolide and Dactylolide. (—)-Zampanolide and
(+)-dactylolide (47 and 48, respectively, Figure 12) are

(-)-Zampanolide (47)

(+)-Dactylolide (48)

Figure 12. Structures of naturally occurring (—)-zampanolide and

(+)-dactylolide.

structurally related natural products isolated, respectively,
from Fasciospongia rimosa,"”* the same sponge found on the
island of Okinawa that yielded laulimalide,"*® and from
Dactylospongia sp.'”> These two compounds share the same
highly unsaturated macrolactone core but with opposite
absolute configuration. In addition, zampanolide features a
characteristic N-acyl hemiaminal side chain. The total synthesis
and assignment of absolute configuration of both antipodes of
47 and 48 were reported first by the Smith and then Hoye
laboratories. ¥~

In 2009, 47 was reported to stabilize MTs in cells and to
promote the polymerization of purified tubulin in cell-free
assays.”®® The same studies revealed that 47 exhibits low
nanomolar ICy, against several cell lines, including those that
overexpress the Pgp.”*® Similar MT-stabilizing properties have
been described for 48,>*” although this compound was found to
be considerably less cytotoxic than 47, with IC, values in the
low micromolar range.'”> Competition binding studies revealed
that 47 targets the taxane site and does not interfere with the
binding of laulimalide with MTs.'®? Interestingly, these studies
also revealed that the mode of action of 47 and 48, like
cyclostreptin, involves covalent modification of specific residues
(Asn228 and His229) found in the taxane binding site.
However, compared to cyclostreptin, 47 is a considerably
more potent MT-stabilizing agent. As in the case of
cyclostreptin, the therapeutic potential of 47 as a treatment
for tauopathies may be limited because of the alkylating
properties of this compound.
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Ceratamines. Ceratamines A and B (49 and 50,
respectively, Figure 13), originally isolated from marine sponge

OMe OMe
Br Br
0 0
R‘N \N
\ \
\ (TN \ N
iy S,
/

—

R = CH3, Ceratamine A (49)
R = H, Ceratamine B (50)

51

Figure 13. Structures of naturally occurring ceratamine A and B and of
a synthetic congener (51).

Pseudoceratina sp. collected in Papua New Guinea, are
antimitotic heterocyclic alkaloids characterized by an unusual
imidazo[4,5-d]azepine core.”® These compounds were found
to promote the polymerization of purified tubulin in the
absence of MAPs, although less potently than paclitaxel.209
Competition binding studies revealed that the ceratamines do
not act as competitive inhibitors of paclitaxel binding.**”

Interestingly, ceratamines are the only nonchiral examples
among all MT-stabilizing natural products. Because of this and
because of the comparatively simpler structure, ceratamines are
considered as promising lead compounds for cancer chemo-
therapy.”® Such attributes also suggest that compounds from
this class may be identified as CNS-active candidates for the
treatment of tauopathies. The syntheses of the natural products
have been described by Coleman and co-workers,”"® with
several analogues constructed and evaluated.*'"*'> This effort
resulted in the identification of selected derivatives (e.g, 51,
Figure 13) with improved antimitotic and MT-stabilizing
properties.211

Other Naturally Occurring Compounds with Reported
MT-Stabilizing Properties. In addition to the different
classes of natural products discussed above, a number of
other naturally occurring compounds, or derivatives thereof,
have been reported to exhibit MT-stabilizing properties (Figure
14). These include dicumarol (52),*"3 jatrophanes (53—-55),>"*
tubercidin (56),>"* xanthophylls (e.g., lutein, 57),>'® as well as
the NAP peptide (58), also known as davunetide, which is a
short peptide fragment (NAPVSIPQ) derived from the activity-
dependent neuroprotective protein (ADNP).217 However, as
reported by Buey and co-workers,'”> who conducted a
comparative study involving different classes of MT-stabilizing
agents, the MT-stabilizing properties of most of these
compounds (i.e, 52—55, 57) were not confirmed. Likewise,
the NAP peptide, which has been found to be neuroprotective
in many different animal models (reviewed by Gozes and co-
workers”'®7**°) and is currently in phase II/III clinical trials for
AD and progressive supranuclear palsy (PSP), was reported to
be a MT-stabilizing agent.nl’222 However, recent studies
indicate that this peptide may not directly impact MT
dynamics.**®

Synthetic MT-Stabilizing Agents. Although the vast
majority of known MT-stabilizing agents are structurally
complex natural products, progress has been made in the
identification of small synthetic molecules with MT-stabilizing
properties. These compounds, which include GS-164 (59),
identified by scientists at Takeda Chemical Industries Ltd.,***
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Figure 14. Natural products with reported MT-stabilizing properties.
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Figure 15. MT-stabilizing 59, estradiol derivatives 60 and 61, and thalidomide analogue 62.

selected estradiol derivatives,”*® such as 60 and 61, and a
derivative of thalidomide, SHPP-33 (62),>*° could be
considered as potentially interesting leads for AD drug
discovery programs (Figure 15).

Furthermore, screening programs directed at the discovery of
antifungal agents identified multiple series of synthetic mono-
and diheterocyclic compounds with MT-stabilizing properties,
including certain triazolopyrimidines typified by cevipabulin®*’
(also known as TTI-237, 63, Figure 16A), as well as some
structurally related phenylpyrimidines®*® (Figure 16B), pyr-
idopyridazines,”*® pyridotriazines° (Figure 16C), and pyr-
idazines®! (e.g, 64, Figure 16D).

Although the vast majority of these synthetic MT-stabilizing
agents have been investigated only as antifungal agents, in
recent years there have been reports of compounds of this type
being explored as potential anticancer drugs. Among these, 63
displayed excellent anticancer activities in several nude mouse
tumor xenograft models.**” Moreover, 63 was found to exhibit
excellent pharmaceutical properties, including oral bioavail-
ability, metabolic stability, and water solubility.”*” Interestingly,
the mechanism by which these heterocyclic compounds
promote MT-stabilization appears to be distinct from that of
other classes of MT-stabilizing natural products.”***** In fact,
radioligand binding studies demonstrated that 63 does not
compete for the taxane binding site on S-tubulin.*** Instead,
this compound appears to affect vinblastine binding to p-
tubulin, although it is not clear yet whether this results from
overla?ping binding sites or a distinct allosteric cevipabulin
site.”>* However, in sharp contrast to the mechanism of
vinblastine, vincristine, and other vinca alkaloids, which
destabilize MTs, 63 and related congeners promote the
polymerization of tubulin into MTs.>***** Cevipabulin is
currently undergoing clinical trials as an anticancer agent.234
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Figure 16. Representative mono- and diheterocyclic MT-stabilizing
agents.

However, because of the MT-stabilizing ability, favorable
physical—chemical properties, and synthetic accessibility, 63
and/or related analogues may hold promise in the development
of CNS-active MT-stabilizing therapies.

B CONCLUDING REMARKS

Over the past several years, remarkable progress has been made
in the development of tau focused therapies from target
identification toward clinical trials for AD and related FTLD
tauopathies (see Lee et al?*). Among a growing number of
potentially druggable targets that could abrogate tau-mediated
neurodegeneration,™" counteracting the functional loss of tau
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with MT-stabilizing agents is one of the most biologically and
pathologically well grounded. Thus, these agents appear to be
among the most compelling as potential treatments for
neurodegenerative tauopathies. The promising results obtained
from the epothilone D studies in tau Tg animal models,
summarized here, provide important validation of this
therapeutic strategy and, notably, have resulted in the selection
of e;)othilone D as a clinical candidate for the treatment of
AD.*
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